Topic Modeling of E-News in Punjabi
نویسندگان
چکیده
منابع مشابه
News Selection with Topic Modeling
There are numerous news articles coming to news aggregators and important news are selected to be presented on the front-page. There are two types of news selection for the front-page of news aggregators: personalized and public news recommendation (selection). This study examines public news recommendation that aims to satisfy all users’ interest on the front-page. Public news recommendation i...
متن کاملIncorporating Entities in News Topic Modeling
News articles express information by concentrating on named entities like who, when, and where in news. Whereas, extracting the relationships among entities, words and topics through a large amount of news articles is nontrivial. Topic modeling like Latent Dirichlet Allocation has been applied a lot to mine hidden topics in text analysis, which have achieved considerable performance. However, i...
متن کاملTopic Tracking for Punjabi Language
This paper introduces Topic Tracking for Punjabi language. Text mining is a field that automatically extracts previously unknown and useful information from unstructured textual data. It has strong connections with natural language processing. NLP has produced technologies that teach computers natural language so that they may analyze, understand and even generate text. Topic tracking is one of...
متن کاملTime Series Topic Modeling and Bursty Topic Detection of Correlated News and Twitter
News and twitter are sometimes closely correlated, while sometimes each of them has quite independent flow of information, due to the difference of the concerns of their information sources. In order to effectively capture the nature of those two text streams, it is very important to model both their correlation and their difference. This paper first models their correlation by applying a time ...
متن کاملTopic detection in broadcast news
We propose a system for the Topic Detection and Tracking (TDT) detection task concerned with the unsupervised grouping of news stories according to topic. We use an incremental k-means algorithm for clustering stories. For comparing stories, we utilize a probabilistic document similarity metric and a traditional vector-space metric. We note that that the clustering algorithm requires two differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian Journal of Science and Technology
سال: 2015
ISSN: 0974-5645,0974-6846
DOI: 10.17485/ijst/2015/v8i27/81665